Главная страница   Страница автора

В.П.Севрюк

Отображение геометрических структур

Скачать (zip-rtf)

//Материалы конференции «Вологдинские чтения»: Машиностроение, естественные науки. -Владивосток: ДВГТУ, 2001, с. 69 – 72.


В.П.Севрюк Отображение геометрических структурГлавная страница Страница автора В.П.Севрюк Отображение геометрических структур Скачать (zip-rtf) //Материалы конференции <Вологдинские чтения>: Машиностроение, естественные науки. -Владивосток: ДВГТУ, 2001, с. 69 - 72. В. П. Севрюк ОТОБРАЖЕНИЕ ГЕОМЕТРИЧЕСКИХ СТРУКТУР ABSTRACT Mapping geometrical arrangements of a fiber space of differential equations, bound mapping of Hopf-Colle is under construction. Устанавливается изоморфизм отображений Хопфа-Коула (Hopf E, Cole J. D.) [ 1, 2 3 ] и отображений геометрических структур дифференциальных уравнений, что позволяет определить сферы действия геометрического исчисления с соответствующей метрикой. Эта сфера действия соответствующих метрик определяется линейными и нелинейными связями. Имеется проблема. В настоящее время геометрии искривленных пространств позволяют извлекать физическую информацию в основном о системах космических и галактических масштабов: релятивистская теория гравитации (ОТО) и новая релятивистская теория гравитации (РТГ), в которых определяется <метрический тензор риманового пространства>. Но геометрия - раздел математики. Геометрическое исчисление имеет силу во всех разделах физики. Примером может служить интегральное исчисление, которое широко используется во всех разделах физики. С помощью метрического тензора опускают и поднимают индексы у тензоров, находят их абсолютные переносы, определяют ковариантные производные и связности: Итак, посредством определенных в ОТО и РТГ метрических тензоров дважды поднимаются индексы, например, у тензора диэлектрической проницаемости в электродинамике, определяется перенос составляющих вектора электрической напряженности. Каков физический смысл этих действий? Ведь метрические тензоры в ОТО и РТГ - это гравитационные потенциалы! В материальном мире реализуются многомерные пространства. С каждой физической системой и с каждым процессом ассоциируются соответствующей структуры пространства. Введение многомерных расслоенных пространств возможно во всех разделах физики. И не просто возможно, а геометрии расслоенных пространств составляют основу теорий всех разделов физики. Геометрические действия с соответствующей метрикой возможно только в рамках соответствующей связи. При переходе к другой связи посредством соответствующих отображений происходит переход и к другой метрике посредством этих же отображений. Введение тензоров (скаляров, спиноров, векторов, тензоров более высокого ранга) производится только относительно соответствующих преобразований обобщенных координат. В физике вводятся многомерные пространства внутренних степеней свободы. Примером пространства внутренних степеней свободы в физике может служить изотопическое пространство, векторы в котором вводятся на основе преобразований координат изотопического пространства. В пространстве внутренних степеней свободы вводятся обобщенные базовые и слоевые координаты. В качестве демонстрации данных утверждений и рассматривается сформулированная здесь задача. Отображение Хопфа-Коула связывает два дифференциальных уравнения и их решения [ 1, 2, 3 ]: нелинейное уравнение Бюргерса [ 4 ] и уравнение теплопроводности (диффузии). Эти уравнения отображают соответствующие связи. Этих уравнений мы рассматриваем частные случаи (демонстрируется сам принцип) и обобщаем их на слоевые пространства. Нелинейное уравнение (3) (см. Табл.) получено из уравнения типа уравнения Бюргерса в классе решений т.е. (1) с использованием отображения (2) [ 5 ]: Отображение геометрических структур Таблица Дифференциальное уравнение типа уравнения теплопроводности (3) -постоянные. - длина вектора в пространстве - постоянная интегрирования. (5) (10) (12) (5') Дифференциальные уравнения, связанные отображением Хопфа-Коула (2) - постоянные. слоевые пространства слоевые координаты метрические функции решение дифференциальных уравнений дифференциальные уравнения для метрической функции решения дифференциальных уравнений для метрических функций отображение Хопфа-Коула для метрических функций (7) ковариантные слоевые координаты составляющие метрического тензора - однородные степени нуль в слоевых координатах. коэффициенты связностей - однородные степени - 1 в слоевых координатах . длина векторов условие Эйлера выполнение свойства (14) дважды ковариантные составляющие метрического тензора Уравнение, следующее из нелинейного дифференциального уравнения типа уравнения Бюргерса (4) - постоянные - длина вектора в пространстве где - постоянная интегрирования и (6) (9) (11) (13) (6') ) Из Таблицы следует, что структура составляющих контравариантных векторов, метрического тензора, связностей сохраняется. Изменяется их конкретное содержание. Отображения Хопфа-Коула меняют длину слоевых координат . Поскольку выполняется условие Эйлера и сохраняется свойство (14),то коэффициенты связностей найдены правильно. Итак, 1)если связь задана дифференциальным уравнением вида (3), тогда следует проводить геометрическое исчисление с метрическим тензором (10) и метрикой (5), 2)если же связь задана нелинейным дифференциальным уравнением вида (4), тогда следует проводить геометрическое исчисление с метрическим тензором (11) и метрикой (6), которые могут быть получены отображением Хопфа-Коула (2). ЛИТЕРАТУРА 1.Cole J.D. On a quasilinear parabolic equation occurring in aerodynamics/ Quart App. Vath.,1951, 9, pp. 225-236. 2.Hopf T. The partial differential equation Comm. Pure Appl.Math.,1950, pp/ 201-230. 3.Абловиц М., Сигур X. Солитоны и метод обратной задачи. Перевод с англ. -М.: Мир, 1987, 180 с. 4.Burgers J. M. A mathematical model illustrating the theory of turbulence/Adv. Appl. Mech, 1948, 1, pp. 171-199. 5.Севрюк В.П. Геометрии расслоенных пространств теории обобщенных криволинейных координат. ВИНИТИ , N 3378-B90 Деп., 145 с.



Сайт создан в системе uCoz